
Crossing the Gap: A Deep Dive into

Zero-Shot Sim-to-Real Transfer for Dynamics
Supplementary Material

Eugene Valassakis, Zihan Ding, and Edward Johns

1 Overview

In this document we detail supplementary information about our implemen-
tations, as well as provide the full range of results from our experiments. In
section 2, we present details about our policy implementations, including neu-
ral network architectures and hyperparameters for the RL algorithms used.
In section 5, we provide further details about our simulation environments,
enumerating all the relevant simulator parameters, which methods randomise
these parameters during training, and their sampling distributions. In sec-
tion 6, we present a very detailed breakdown of all our experimental results,
including trajectory plots and performance tables for each method and goal
considered in our experiments.

2 Transfer Policy Implementation Details

2.1 Core architecture

Table 1 shows details for our implementation of TD3, our core RL algorithm,
including details about the core neural network architecture that we use as
the basis for all our methods.

1

Table 1: Hyperparameter details for the TD3 implementation used as our core
RL algorithm.

Parameter Value
Exploration noise decayed factor 0.9999

Exploration noise initial scale 0.3
Evaluation noise scale 0.5

Delayed update interval 3
Policy learning rate 3 × 10−4

Q-network learning rate 3 × 10−4

Replay buffer size 106

Policy size 5 layers, 512 units for each hidden layer
Q-network size 4 layers, 512 units for each hidden layer
Action range 1.

Batch size 640
Hidden activation ReLU

Action output activation Tanh

Figure 1: Illustration of our core network architecture, trained using TD3. All
depicted layers are fully connected, and the numbers represent the number of
units in each layer.

2

2.2 Adaptive Policy

The key difference between our core architecture networks and those used to
train our adaptive policy is that the adaptive networks have two branches,
as illustrated in Fig. 2. As in [1], one branch contains an LSTM layer which
processes state-action sequences, and one branch is fully connected, similarly
to our core architecture. The outputs of the LSTM branch are concatenated
with the outputs of the first hidden layer of the fully connected branch before
being processed by additional fully connected layers.

Figure 2: Illustration of the neural networks used to train our adaptive policy.
A loop arrow represent the recurrence of the LSTM layer, and the numbers
represent the number of units.

2.3 UPOSI

In UPOSI, there are two key models: the OSI network for predicting dynamics
parameters from motion state sequences and the UP network for solving the
task, conditioned on those dynamics parameters [3].

In our case, the UP network is based on our core architecture, with the
dynamics parameters as an additional input, as shown in Fig. 3. Our OSI
network that predicts those parameters has 3 hidden layers of 512, 256, 128
units with Tanh activations and dropout layers with a rate set to 0.1 during
training. The input to our OSI network is made by stacking m = 4 motion
states xt−m . . . xt, where m = 4 in our experiments. xt is a motion state
containing both the environment observation ot, and the internal state sint

3

of of the robot, which contains joint positions and velocities. The network
architecture of OSI is shown in Fig. 4.

Our OSI network is tasked to both predict the internal dynamics param-
eters of the robot arm and dynamics parameters of external objects. The
internal dynamics parameters are the robot link masses, the joint damping,
armature and friction values, and the PID controller gains. We ignore simula-
tor parameters such as action and observation noise ranges, timestep param-
eters and time delays as the inputs to the OSI network do not contain any
time information, and white noise cannot be inferred from a history of states
and actions. The external dynamics parameters are density, size and friction
values of the puck in the pushing and sliding tasks.

As described in original paper of UPOSI [3], the overall learning process
is separated into two stages: the training of UP and the training of OSI. In
our experiments, we use TD3 in order to train our networks, and train the
UP for a longer time than the conservative and adaptive policies (to ensure
convergence). The training of OSI is further broken down into two steps:
(i) the training of the OSI with UP as the exploration policy conditioned on
oracle dynamics parameters, and (ii) the training of the the OSI with UP as
the exploration policy, but conditioned on the OSI predicted parameters. The
first step takes 100 episodes of samples for all three tasks, and the second
step takes around 30000 episodes of samples. The OSI model is trained for 10
iterations on samples collected every 32 episodes, each with a different set of
dynamics.

4

Figure 3: The policy and Q-network architectures used in training the UP
with TD3. µ represents the dynamics parameters of the environment, which
we get either from OSI or by querying them directly from the simulator, and
the numbers represent the number of units in each layer.

Figure 4: The network architecture of the OSI model, where xt is the motion
state formed by concatenating the policy inputs st with the internal state of
the robot sint . The numbers represent the nymber of units in each layer.

5

2.4 EPI

For training the models using EPI, we mostly follow the original paper [4],
with our particular design decisions described in this section.

There are three key stages to the training procedure: (i) to collect a tran-
sition dataset with a pre-trained policy, (ii) to train the EPI policy together
with the embedding network and prediction networks using this dataset, and
(iii) to train the task-specific policy conditioned on the embedding vectors
from the trained embedding network.

For collecting the transition dataset in (i), although in [4] the exploration
policy is trained on a fixed dynamics environment, we simply used our pre-
trained conservative policies for each task. Using it, we collected 100 episodes
of samples, also adding ε−greedy exploration (ε = 0.2), where each episode has
a randomised set of parameters and 500 timesteps. Similarly to the original
paper, the Vine method and separation loss were applied in our data collection
process [4]. In order to apply the separation loss, continuous randomisation
ranges are discretised into 5 bins, while categorically distributed randomisation
parameters are kept.

For state (ii), the training of the embedding and prediction networks, a
total number of 1000 iterations of training are taken. For each iteration, a
batch size of 20 sampled environments are picked from the transition dataset,
and applied for EPI policy to roll out a total of 30 timesteps of trajectories
for embedding. Each input sequence to the embedding network has a length
of 10, so the 30 timesteps are split evenly into 3 pieces of input samples. An
EPI reward is generated for the 10 timesteps of probing policy rollout as an
additional reward to the task-oriented reward, with a multipliplicative factor
of 5×104 for normalisation. The embedding, prediction networks and probing
policy networks are all updated 10 times for each batch of samples in an
iteration, and the probing policy has an inner loop of 10 updates.

For stage (iii), the embedding and probing policy networks are loaded, and
after an initial 10 timesteps at the beginning of each episode the dynamics
embedding z is predicted. Then the task-specific policy takes over without
resetting the environment at this stage, and receives as an input the predicted
dynamics embedding z. The training process of task-specific policy is done in
the same way as the UP training described in the previous section.

In Table 2, we show the hyperparameters used in our implementation of
PPO (used to train the probing policy), including the architecture details of
the networks.

6

Table 2: Hyperparameter details for the PPO implementation used to train
the probing policy in the EPI method.

Parameter Value
Policy learning rate 1 × 10−4

Value network learning rate 2 × 10−4

Policy update epochs 10
Value network update epochs 10

ε 0.2
Policy size 5 layers, 512 units for each hidden layer

Value network size 4 layers, 512 units for each hidden layer
Action range 1.

Batch size 128
Hidden activation ReLU

Action output activation Tanh

The architectures of the embedding and prediction networks are shown in
Fig. 5. The embedding network has 3 layers and the prediction network has
4 layers. Both of them have 512 nodes and ReLU activations for each hidden
layer, and Tanh activations for the outputs. The state sequence st−n...st−1, st
input to the embedding network has a length of 10, and the learned embedding
z has a dimension of 10.

Figure 5: The network architecture of prediction and embedding models in
EPI, where z is the learned embedding vector.The numbers represent the num-
ber of units in each layer.

The architecture of the probing policy is shown in Fig. 6. The stochastic

7

policy has 5 layers with 512 nodes and a ReLU activation for each hidden
layer. The output layer for the action mean applies a Tanh activation, and
the standard deviation is a single layer of learnable variables. The actions
are sampled from the diagonal Gaussian distribution with those mean and
standard deviation. The value network has 4 layers with 512 hidden nodes
each and ReLU activations on the hidden layers.

Figure 6: The network architecture of the probing policy in the EPI method.
The numbers represent the number of units in each layer.

In order to train our task-specific policy, we use the TD3 algorithm as
per the conservative, adaptive and UPOSI policies, but with the policy and
Q-network additionally conditioned on the embedding vector z, as shown in
Fig. 7.

8

Figure 7: The network architecture of the EPI task-specific policy trained
using TD3, where z is the learned embedding vector. The numbers represent
the number of units in each layer.

3 Reward Functions

Our reward functions can be written as r = rcommon + rtask. For all tasks,
rcommon = 0.1 ∗ 1success −

∑
joints 1lim, with 1success the indicator function of

whether the goal region is reached, and 1lim an indicator of whether a certain
joint hits its limit. For reaching, the goal region has a 1 cm radius, and
rtask = −deg − 1table, with deg the end-effector-to-goal distance and 1table an
indicator of whether the robot hits the table. For pushing, the goal region has a
3 cm radius, and rtask = −deo−dog, with deo and dog the end-effector-to-object
and object-to-goal distances, respectively. For sliding, the goal region has a
2.3cm radius, and rtask = −dog − 1fall, with dog the object-to-goal distance,
and 1fall an indicator on whether the object has fallen off the sliding platform.

4 Differential evolution Parameters Used

For our differential evolution optimisation we used an out-of-the-box imple-
mentation [2] , with the following parameters:

9

Table 3: Differential evolution parameters used

Parameter Value
Population size 15 x the search space dimension
Crossover Probability 0.7
Differential weight 0.5
Strategy best1bin

5 Simulation Environments

In this section we describe in detail all the environment parameters that were
considered for each of our three tasks. Because there is a significant overlap
between them, we organise Tables 4, 5 and 6 as follows. Table 4 shows all
the parameters relevant to the reaching simulator. Table 5, shows all the pa-
rameters that are considered in the pushing simulator but not in the reaching
simulator. Together, Tables 4 and 5 list all the parameters that are considered
in the pushing simulator. Table 6 lists the parameters that are relevant to the
sliding simulator, but to not to the reaching or pushing simulators. When Ta-
ble 6 lists a parameter that appears in either Table 4 or 5, then the distribution
range of this parameter is different for sliding. Finally, the sliding simulator
does not utilise any parameters that have to do with the end effector, and all
the joint parameters only have dimension 2 (only the last two joints of the
robot are actuated in this task). All in all, the total set of parameters relevant
to sliding can be retrieved by combining Tables 4, 5 and 6, ignoring all entries
that correspond to “End effector” parameters, and considering all the joint
parameters as having dimension 2 (only for the last two joints).

10

Table 4: Table of parameters defining reaching environments, their sampling
distributions, and the methods which utilise them.

Parameter Symbol Range Distribution Dimension Methods Further comments

Joint
Torques

JT [0., 1.5] Uniform 7
RFI,
RFI+

One dimension per joint. At each timestep,
a torque for each joint is sampled
from U[-J T, J T], and applied to that joint.

Timestep tloop [0.0, 0.01] Uniform 1 DR

At each timestep, the policy control loop
iteration time will be 0.1s+ λ, with
lamda ∼ exp(tloop), and exp the
exponential distribution.

PID
timestep

tpid [0.0, 0.04] Uniform 1 DR The PID feedback loop timestep.

Action
additive

noise
αadd [0.01, 0.1] Uniform 1 DR

At each timestep, the policy action a
is set to a = a ∗ εm + εadd + εs, with
εadd U [−αadd, αadd].

Action
multiplicative

noise
αm [0.005, 0.02] Uniform 1 DR

At each timestep, the policy action a
is set to a = a ∗ εm + εadd + εs,
with εm = 1.0 + u, u U [−αm, αm].

Action
systematic

noise
αs [−0.05, 0.05] Uniform 1 DR

At each timestep, the policy action a is set to
a = a ∗ εm + εadd + εs,
with εs sampled once per episode from
U [−αs, αs] .

End effector
position

noise
σp−eef [0.0005, 0.001] Uniform 1

DR,
RFI+

At each timestep, the end effector
position observation fed into the policy
is perturbed by random normal noise
with mean 0 and standard deviation σp−eef .

End effector
velocity

noise
σv−eef [0.0005, 0.001] Uniform 1

DR,
RFI+

At each timestep, end effector velocity
observation fed into the policy is perturbed
by random normal noise with mean 0
and standard deviation σv−eef .

Link
masses

Ml [0.98, 1.02] Uniform 7 DR
One per robot link. Defines multiplicative
factors to the baseline robot link masses.

Joint
damping

JD [0.5, 2.] LogUniform 7 DR
One per robot joint. Defines multiplicative
factors to the baseline joint damping values.

Armature JA [0.66, 1.5] LogUniform 7 DR
One per robot joint. Defines multiplicative
factors to the baseline joint
armature parameter values.

Joint
Friction

JF [0.66, 1.5] LogUniform 7 DR
One per robot joint. Defines multiplicative
factors to the baseline joint friction loss
parameter values.

Proportional
Gains

Kp [0.66, 1.5] LogUniform 7 DR
One per robot joint. Defines multiplicative
factors to the baseline proportional gains
of the velocity PID controller.

Integral
Gains

Ki [0.66, 1.5] LogUniform 7 DR
One per robot joint. Defines multiplicative
factors to the baseline integral gains
of the velocity PID controller.

Derivative
Gains

Kd [0.66, 1.5] LogUniform 7 DR
One per robot joint. Defines multiplicative
factors to the baseline derivative gains
of the velocity PID controller.

11

Table 5: Table of parameters defining pushing environments, their sampling
distributions, and the methods which utilise them.

Parameter Symbol Range Distribution Dimension Methods Further Comments

Object
forces

Fo [0.0, 0.0011] Uniform 3
RFI,
RFI+

At each timestep, a force is sampled
from U [− Fo, Fo] in each dimension,
and applied to the puck.

Object
torques

To [0.0, 0.0005] Uniform 3
RFI,
RFI+

At each timestep, a torque is sampled
from U [− Fo, Fo] in each dimension,
and applied to the puck.

End effector
time
delay

Tdeef [0,1] Categorical 1
DR,

RFI+

The end-effector position the policy
observes is delayed by 0 or 1 control
loops, sampled at the beginning of an
episode.

Object
time
delay

Tdo [0,2] Categorical 1
DR,

RFI+

The puck position the policy
observes is delayed by 0 or 1 control
loops, sampled at the beginning of an
episode.

Object
position

noise
σp−o [0.0005, 0.001] Uniform 1

DR,
RFI+

At each timestep, the puck
position observation fed into the policy
is perturbed by random normal noise
with mean 0 and standard deviation
σp−o.

Object
velocity

noise
σv−o [0.0005, 0.0015] Uniform 1

DR,
RFI+

At each timestep, the puck
velocity observation fed into the policy
is perturbed by random normal noise
with mean 0 and standard deviation
σv−o.

Object
angle
noise

σa−o [0.005, 0.05] Uniform 1
DR,

RFI+

At each timestep, the puck angular
position observation fed into the policy
is perturbed by random normal noise
with mean 0 and standard deviation
σa−o.

Object
density

ρo [100, 800] Uniform 1 DR
The puck’s mass density is sampled
every episode.

Object
size

szo [0.995, 1.005] Uniform 1 DR
The puck’s size is scaled at each episode
by szo.

Object
sliding
friction

frs [0.01, 0.8] Uniform 1 DR Sampled every episode.

Object
torsional
friction

frt [0.001, 0.3] Uniform 1 DR Sampled every episode.

12

Table 6: Table of parameters defining sliding environments, their sampling
distributions, and the methods which utilise them. Only parameters additional
to, or differing from, Tables 4 and 5 are shown.

Parameter Symbol Range Distribution Dimension Methods Further Comments

Joint
position

noise
σjp [0.0005, 0.005] Uniform 2

DR,
RFI+

At each timestep, the end, joint positions
observations fed into the policy
are perturbed by random normal noise
with mean 0 and standard deviationσjp

Joint
velocity

noise
σjv [0.005, 0.005] Uniform 2

DR,
RFI+

At each timestep, the end, joint velocities
observations fed into the policy
are perturbed by random normal noise
with mean 0 and standard deviationσjv

Object
density

ρo [100, 900] Uniform 1 DR
The puck’s mass density is sampled
every episode.

Object
sliding
friction

frs [0.1, 0.85] Uniform 1 DR Sampled every episode.

6 Results

In this section we showcase our full range of experimental results, both in
simulation and reality. Fig. 8 and 9 show illustrations of simulation and real
world trajectories for the pushing and reaching tasks, respectively. Tables 7-
12 show, for each task, the average performances over several trajectories for
each method and each goal. Reaching results are shown in Table 7 (real world)
and Table 8 (simulation). Pushing results are shown in Table 9 (real world)
and Table 10 (simulation). Sliding results are shown Table 11 (real world) and
Table 12 (simulation). We note that in the following tables RL performance is
shown in terms of costs, with the rewards obtained during RL training being
the negative of the costs shown.

13

Figure 8: Trajectory of the puck over 5 trials for each method on the sliding
task. The axes distances are in meters.

Figure 9: Trajectory of the puck over 5 trials for each method on the pushing
task. The axes distances are in meters.

14

Table 7: Full table of results for the Reaching task over the real world exper-
iments. For each goal, we present the mean and standard deviation of each
performance score over 7 trajectories. The cost at each timestep corresponds
to the distance between the end effector and the goal. The cumulative cost
is the sum of the costs over all timesteps in a trajectory and the final cost
corresponds to the maximum cost that occured in the last 0.5s of execution.

NR
Mean over 7 trajectories Conservative Policy Adaptive Policy

Easy
Goal

Intermediate
Goal

Hard
Goal

Average
Easy
Goal

Intermediate
Goal

Hard
Goal

Average

Mean Final Cost 0.009 0.010 0.008 0.009 0.013 0.012 0.011 0.012
Mean Final Cost Std 0.001 0.002 0.001 0.002 0.003 0.002 0.001 0.002

Mean Cumulative Cost 3.864 3.942 3.925 3.910 3.955 4.135 4.009 4.033
Mean Cumulative Cost Std 0.028 0.019 0.014 0.021 0.046 0.249 0.106 0.134

Success Rate 0.143 0.143 0.286 0.190 0.000 0.000 0.000 0.000
DR

Conservative Policy Adaptive Policy
Easy
Goal

Intermediate
Goal

Hard
goal

Average
Easy
Goal

Intermediate
Goal

Hard
Goal

Average

Mean Final Cost 0.006 0.009 0.005 0.007 0.010 0.008 0.009 0.009
Mean Final Cost Std 0.002 0.004 0.001 0.002 0.001 0.001 0.001 0.001

Mean Cumulative Cost 3.780 3.860 3.809 3.816 3.919 3.953 3.914 3.928
Mean Cumulative Cost Std 0.035 0.048 0.011 0.031 0.026 0.012 0.017 0.018

Success Rate 0.714 0.286 0.857 0.619 0.000 0.143 0.286 0.143
RFI

Conservative Policy Adaptive Policy
Easy
Goal

Intermediate
Goal

Hard
Goal

Average
Easy
Goal

Intermediate
Goal

Hard
Goal

Average

Mean Final Cost 0.005 0.005 0.003 0.004 0.008 0.007 0.009 0.008
Mean Final Cost Std 0.004 0.003 0.000 0.002 0.001 0.001 0.002 0.001

Mean Cumulative Cost 3.897 3.890 3.929 3.905 3.845 3.909 3.944 3.900
Mean Cumulative Cost Std 0.072 0.045 0.053 0.057 0.012 0.022 0.027 0.021

Success Rate 0.857 0.714 1.000 0.857 0.000 0.143 0.143 0.095
RFI+

Conservative Policy Adaptive Policy
Easy
Goal

Intermediate
Goal

Hard
Goal

Average
Easy
Goal

Intermediate
Goal

Hard
Goal

Average

Mean Final Cost 0.004 0.006 0.004 0.004 0.007 0.007 0.007 0.007
Mean Final Cost Std 0.002 0.004 0.002 0.003 0.001 0.002 0.001 0.001

Mean Cumulative Cost 3.777 3.824 3.876 3.826 3.844 3.873 3.875 3.864
Mean Cumulative Cost Std 0.024 0.033 0.022 0.026 0.024 0.018 0.009 0.017

Success Rate 0.571 0.714 0.857 0.714 0.143 0.286 0.429 0.286
UPOSI EPI

Easy
Goal

Intermediate
Goal

Hard
Goal

Average
Easy
Goal

Intermediate
Goal

Hard
Goal

Average

Mean Final Cost 0.029 0.023 0.026 0.026 0.010 0.010 0.014 0.012
Mean Final Cost Std 0.004 0.004 0.003 0.004 0.002 0.003 0.002 0.002

Mean Cumulative Cost 4.460 4.395 4.462 4.439 3.913 4.069 5.245 4.409
Mean Cumulative Cost Std 0.115 0.028 0.019 0.054 0.039 0.136 0.059 0.078

Success Rate 0.000 0.000 0.000 0.000 0.000 0.143 0.000 0.048

15

Table 8: Full table of results for the Reaching task over the simulation world
experiments. For each goal, we present the mean and standard deviation of
each performance score over 50 trajectories. The cost at each timestep corre-
sponds to the distance between the end effector and the goal. The cumulative
cost is the sum of the costs over all timesteps in a trajectory and the final cost
corresponds to the maximum cost that occurred in the last 0.5s of execution.

NR
Mean over 50 trajectories Conservative Policy Adaptive Policy

Easy
Goal

Intermediate
Goal

Hard
Goal

Average
Easy
Goal

Intermediate
Goal

Hard
Goal

Average

Mean Final Cost 0.008 0.008 0.008 0.008 0.004 0.003 0.005 0.004
Mean Final Cost Std 0.000 0.000 0.000 0.000 0.001 0.001 0.000 0.001

Mean Cumulative Cost 4.036 4.072 4.199 4.103 3.974 3.992 4.361 4.109
Mean Cumulative Cost Std 0.000 0.000 0.000 0.000 0.033 0.015 0.003 0.017

Success Rate 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
DR

Conservative Policy Adaptive Policy
Easy
Goal

Intermediate
Goal

Hard
Goal

Average
Easy
Goal

Intermediate
Goal

Hard
Goal

Average

Mean Final Cost 0.004 0.004 0.004 0.004 0.003 0.004 0.004 0.004
Mean Final Cost Std 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

Mean Cumulative Cost 4.004 4.110 4.158 4.090 4.057 4.127 4.217 4.134
Mean Cumulative Cost Std 0.186 0.181 0.167 0.178 0.169 0.150 0.200 0.173

Success Rate 0.980 1.000 1.000 0.993 1.000 1.000 1.000 1.000
RFI

Conservative Policy Adaptive Policy
Easy
Goal

Intermediate
Goal

Hard
Goal

Average
Easy
Goal

Intermediate
Goal

Hard
Goal

Average

Mean Final Cost 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003
Mean Final Cost Std 0.000 0.000 0.001 0.001 0.001 0.001 0.001 0.001

Mean Cumulative Cost 4.033 4.034 4.150 4.073 4.048 4.079 4.140 4.088
Mean Cumulative Cost Std 0.099 0.082 0.160 0.114 0.120 0.106 0.094 0.107

Success Rate 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
RFI+

Conservative Policy Adaptive Policy
Easy
Goal

Intermediate
Goal

Hard
Goal

Average
Easy
Goal

Intermediate
Goal

Hard
Goal

Average

Mean Final Cost 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003
Mean Final Cost Std 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

Mean Cumulative Cost 3.975 4.016 4.155 4.049 3.976 4.005 4.184 4.055
Mean Cumulative Cost Std 0.063 0.088 0.095 0.082 0.104 0.105 0.128 0.113

Success Rate 1.000 1.000 0.980 0.993 1.000 1.000 1.000 1.000
UPOSI EPI

Easy
Goal

Intermediate
Goal

Hard
Goal

Average
Easy
Goal

Intermediate
Goal

Hard
Goal

Average

Mean Final Cost 0.027 0.023 0.031 0.027 0.005 0.006 0.005 0.005
Mean Final Cost Std 0.005 0.005 0.004 0.005 0.001 0.001 0.001 0.001

Mean Cumulative Cost 4.738 4.614 4.949 4.767 4.580 4.412 5.292 4.761
Mean Cumulative Cost Std 0.128 0.178 0.155 0.153 0.255 0.158 0.201 0.205

Success Rate 0.000 0.000 0.000 0.000 0.980 0.920 1.000 0.967

16

Table 9: Full table of results for the Pushing task over the real world exper-
iments. For each goal, we present the mean and standard deviation of each
performance score over 7 trajectories. The cost at each timestep corresponds
to the distance between the puck.The cumulative cost is the sum of the costs
over all timesteps in a trajectory and the goal, and the final cost corresponds to
the maximum cost that occured in the last 0.5s of execution. The ’-’ indicates
that the policy was too dangerous to run full experiments.

NR
Mean over 7 trajectories Conservative Adaptive

Easy
Goal

Intermediate
Goal

Hard
Goal

Average
Easy
Goal

Intermediate
Goal

Hard
Goal

Average

Mean Final Cost 0.0677 0.0287 0.0813 0.0592 0.1952 0.0571 0.2788 0.1770
Mean Final Cost Std 0.0513 0.0135 0.0520 0.0389 0.0171 0.0546 0.0079 0.0265

Mean Return 9.1713 5.8160 11.5122 8.8332 15.7753 7.2288 22.3730 15.1257
Mean Return Std 2.6381 0.6884 3.0323 2.1196 1.0398 3.2626 0.4186 1.5737

Success Rate 0.1429 0.4286 0.0000 0.1905 0.0000 0.2857 0.0000 0.0952
DR

Conservative Adaptive
Easy
Goal

Intermediate
Goal

Hard
Goal

Average
Easy
Goal

Intermediate
Goal

Hard
Goal

Average

Mean Final Cost 0.0276 0.0397 0.1502 0.0725 0.0153 0.1124 0.1224 0.0834
Mean Final Cost Std 0.0206 0.0102 0.0547 0.0238 0.0070 0.0094 0.0306 0.0157

Mean Return 6.6423 5.9991 15.0656 9.2357 6.3655 11.0234 13.4090 10.2660
Mean Return Std 1.2085 0.5692 2.5541 1.4440 0.4162 0.5469 1.7337 0.8989
Success Rate 0.7143 0.2857 0.0000 0.3333 1.0000 0.0000 0.0000 0.3333

RFI
Conservative Adaptive

Easy
Goal

Intermediate
Goal

Hard
Goal

Average
Easy
Goal

Intermediate
Goal

Hard
Goal

Average

Mean Final Cost 0.0191 0.0207 0.0271 0.0223 0.0797 0.0228 0.1463 0.0829
Mean Final Cost Std 0.0058 0.0081 0.0111 0.0084 0.0661 0.0180 0.0647 0.0496

Mean Return 5.7900 5.1578 8.3925 6.4468 9.2487 5.1180 13.8788 9.4152
Mean Return Std 0.3404 0.4038 1.1638 0.6360 3.8034 1.1098 3.7167 2.8766

Success Rate 1.0000 0.7143 0.7143 0.8095 0.2857 0.7143 0.1429 0.3810
RFI+

Conservative Adaptive
Easy
Goal

Intermediate
Goal

Hard
Goal

Average
Easy
Goal

Intermediate
Goal

Hard
Goal

Average

Mean Final Cost 0.0302 0.0280 0.1539 0.0707 0.0678 0.0286 0.2058 0.1007
Mean Final Cost Std 0.0215 0.0256 0.0492 0.0321 0.0165 0.0218 0.0272 0.0219

Mean Return 7.6319 5.6627 17.0818 10.1255 8.4912 5.5342 17.8657 10.6304
Mean Return Std 0.8576 1.4164 1.7859 1.3533 0.9906 1.2206 1.5436 1.2516

Success Rate 0.5714 0.5714 0.0000 0.3810 0.0000 0.4286 0.0000 0.1429
UPOSI EPI

Easy
Goal

Intermediate
Goal

Hard
Goal

Average
Easy
Goal

Intermediate
Goal

Hard
Goal

Average

Mean Final Cost - - - - 0.0211 0.0448 0.1120 0.0593
Mean Final Cost Std - - - - 0.0099 0.0278 0.0331 0.0236

Mean Return - - - - 11.5938 10.3513 15.9171 12.6207
Mean Return Std - - - - 0.5196 1.0282 1.0024 0.8501

Success Rate - - - - 0.8571 0.2857 0.0000 0.3810

17

Table 10: Full table of results for the Pushing task over the simulation exper-
iments. For each goal, we present the mean and standard deviation of each
performance score over 50 trajectories. The cost at each timestep corresponds
to the distance between the puck and the goal.The cumulative cost is the sum
of the costs over all timesteps in a trajectory, and the final cost corresponds
to the maximum cost that occured in the last 0.5s of execution.

NR
Mean over 50 trajectories Conservative Adaptive

Easy
Goal

Intermediate
Goal

Hard
Goal

Average
Easy
Goal

Intermediate
Goal

Hard
Goal

Average

Mean Final Cost 0.0093 0.0145 0.0100 0.0113 0.0019 0.0801 0.0018 0.0279
Mean Final Cost Std 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Mean Return 5.3478 5.7769 7.0283 6.0510 4.6564 8.6790 8.2663 7.2006
Mean Return Std 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Success Rate 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 1.0000 0.6667
DR

Conservative Adaptive
Easy
Goal

Intermediate
Goal

Hard
Goal

Average
Easy
Goal

Intermediate
Goal

Hard
Goal

Average

Mean Final Cost 0.0082 0.0880 0.0332 0.0431 0.0068 0.0892 0.1025 0.0662
Mean Final Cost Std 0.0038 0.0125 0.0324 0.0162 0.0035 0.0066 0.0086 0.0062

Mean Return 5.1907 9.1214 10.1621 8.1581 6.0003 9.8028 12.2566 9.3532
Mean Return Std 0.4115 0.4075 1.1208 0.6466 0.4907 0.4313 0.5241 0.4820

Success Rate 1.0000 0.0000 0.6600 0.5533 1.0000 0.0000 0.0000 0.3333
RFI

Conservative Adaptive
Easy
Goal

Intermediate
Goal

Hard
Goal

Average
Easy
Goal

Intermediate
Goal

Hard
Goal

Average

Mean Final Cost 0.0070 0.0079 0.0059 0.0069 0.0129 0.0816 0.1034 0.0660
Mean Final Cost Std 0.0036 0.0044 0.0038 0.0039 0.0035 0.0064 0.0080 0.0060

Mean Return 5.0290 5.6128 8.3518 6.3312 5.4607 8.5295 11.4460 8.4787
Mean Return Std 0.1895 0.1543 0.1848 0.1762 0.2351 0.1980 0.2930 0.2420

Success Rate 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.3333
RFI+

Conservative Adaptive
Easy
Goal

Intermediate
Goal

Hard
Goal

Average
Easy
Goal

Intermediate
Goal

Hard
Goal

Average

Mean Final Cost 0.0084 0.0679 0.0216 0.0326 0.0150 0.0744 0.1038 0.0644
Mean Final Cost Std 0.0044 0.0285 0.0179 0.0169 0.0031 0.0094 0.0036 0.0054

Mean Return 5.3845 8.6796 9.0276 7.6972 5.3248 8.7919 11.7893 8.6353
Mean Return Std 0.3296 0.8403 0.6823 0.6174 0.2635 0.3152 0.2839 0.2875

Success Rate 1.0000 0.1800 0.7400 0.6400 1.0000 0.0000 0.0000 0.3333
UPOSI EPI

Easy
Goal

Intermediate
Goal

Hard
Goal

Average
Easy
Goal

Intermediate
Goal

Hard
Goal

Average

Mean Final Cost 0.2840 0.2605 0.3254 0.2899 0.0188 0.0730 0.1103 0.0674
Mean Final Cost Std 0.0004 0.0004 0.0002 0.0003 0.0066 0.0251 0.0104 0.0140

Mean Return 22.7155 20.8401 26.0347 23.1967 11.9658 13.0460 16.8893 13.9670
Mean Return Std 0.0082 0.0118 0.0065 0.0088 0.6002 0.4793 0.5239 0.5344

Success Rate 0.0000 0.0000 0.0000 0.0000 0.9400 0.0800 0.0000 0.3400

18

Table 11: Full table of results for the Sliding task over the real world exper-
iments. For each goal, we present the mean and standard deviation of each
performance score over 7 trajectories. The cost at each timestep corresponds
to the distance between the puck and the goal, if the puck is still on the sliding
panel, or 0.866 if the puck has fallen off the panel. The final cost corresponds
to the maximum cost that occured in the last 0.5s of execution. If the puck
fell before the last 0.5s, this results in a final cost of 0.866. The cumulative
cost corresponds to the sum of the costs over all the trajectory.

NR
Mean over 7 trajectories Conservative Adaptive

Mean Final Cost 0.866 0.866
Mean Final Cost Std 0.000 0.000

Mean Return 39.369 37.837
Mean Return Std 4.908 0.321

Fall Rate 1.000 1.000
Success Rate 0.000 0.000

DR
Conservative Adaptive

Mean Final Cost 0.199 0.748
Mean Final Cost Std 0.001 0.289

Mean Return 11.974 33.160
Mean Return Std 0.026 11.754

Fall Rate 0.000 0.857
Success Rate 0.000 0.000

RFI
Conservative Adaptive

Mean Final Cost 0.508 0.866
Mean Final Cost Std 0.414 0.000

Mean Return 13.666 34.293
Mean Return Std 7.126 0.779

Fall Rate 0.571 1.000
Success Rate 0.143 0.000

RFI+
Conservative Adaptive

Mean Final Cost 0.194 0.399
Mean Final Cost Std 0.276 0.405

Mean Return 10.704 14.111
Mean Return Std 6.607 7.971

Fall Rate 0.143 0.429
Success Rate 0.000 0.000

UPOSI EPI
Mean Final Cost 0.866 0.195

Mean Final Cost Std 0.000 0.003
Mean Return 42.456 11.740

Mean Return Std 3.906 0.115
Fall Rate 1.000 0.000

Success Rate 0.000 0.000

19

Table 12: Full table of results for the Sliding task over the simulation exper-
iments. For each goal, we present the mean and standard deviation of each
performance score over 7 trajectories. The cost at each timestep corresponds
to the distance between the puck and the goal, if the puck is still on the sliding
panel, or 0.866 if the puck has fallen off the panel. The final cost corresponds
to the maximum cost that occured in the last 0.5s of execution. If the puck
fell before the last 0.5s, this results in a final cost of 0.866.The cumulative cost
corresponds to the sum of the costs over all the trajectory.

NR
Mean over 50 trajectories Conservative Adaptive

Mean Final Cost 0.016 0.017
Mean Final Cost Std 0.000 0.002

Mean Return 2.808 2.847
Mean Return Std 0.000 0.013

Fall Rate 0.000 0.000
Success Rate 1.000 0.940

DR
Conservative Adaptive

Mean Final Cost 0.117 0.188
Mean Final Cost Std 0.228 0.339

Mean Return 7.999 10.458
Mean Return Std 6.956 12.219

Fall Rate 0.080 0.200
Success Rate 0.400 0.680

RFI
Conservative Adaptive

Mean Final Cost 0.026 0.046
Mean Final Cost Std 0.018 0.134

Mean Return 3.232 3.695
Mean Return Std 0.452 3.615

Fall Rate 0.000 0.040
Success Rate 0.780 0.800

RFI+
Conservative Adaptive

Mean Final Cost 0.110 0.372
Mean Final Cost Std 0.244 0.411

Mean Return 5.221 15.777
Mean Return Std 6.133 14.119

Fall Rate 0.100 0.420
Success Rate 0.560 0.440

UPOSI EPI
Mean Final Cost 0.629 0.866

Mean Final Cost Std 0.380 0.000
Mean Return 26.073 17.574

Mean Return Std 14.182 1.576
Fall Rate 0.720 1.000

Success Rate 0.220 0.000

20

References

[1] X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel. Sim-to-real
transfer of robotic control with dynamics randomization. In 2018 IEEE
international conference on robotics and automation (ICRA), pages 1–8.
IEEE, 2018.

[2] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy,
D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J.
van der Walt, M. Brett, J. Wilson, K. Jarrod Millman, N. Mayorov, A. R. J.
Nelson, E. Jones, R. Kern, E. Larson, C. Carey, İ. Polat, Y. Feng, E. W.
Moore, J. Vand erPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen,
E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa,
P. van Mulbregt, and S. . . Contributors. SciPy 1.0: Fundamental Algo-
rithms for Scientific Computing in Python. Nature Methods, 17:261–272,
2020.

[3] W. Yu, J. Tan, C. K. Liu, and G. Turk. Preparing for the unknown: Learn-
ing a universal policy with online system identification. arXiv preprint
arXiv:1702.02453, 2017.

[4] W. Zhou, L. Pinto, and A. Gupta. Environment probing interaction poli-
cies. arXiv preprint arXiv:1907.11740, 2019.

21

